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1. Introduction

The use of non-smooth modelling techniques to model the dynamics of a flexible impacting
beam has recently been reported in Ref. [1]. The method used was based on taking a Galerkin
approximation [2] of the partial differential equation (PDE) governing the dynamics of the beam
away from impact, and coupling this to a non-smooth coefficient of restitution rule to model the
impact [3]. In this letter, the advantages and limitations of using a collocation method instead of
the Galerkin method combined with a non-smooth impact law are discussed.
The example of a flexible beam subject to a motion limiting constraint is used, similar to that

discussed in Ref. [1].
The general problem of a cantilever beam impacting against an impact stop has been considered

by several authors—see for example Refs. [4–7]. The collocation approach has been used for
modelling a variety of engineering problems—see for example Refs. [8–11]. In this example,
collocation has the advantage that unlike the Galerkin method there is no requirement to
integrate the mode shape over the domain of interest in order to decouple the system modal
equations. This means that (in general) the collocation method can be applied to a larger range of
problems, particularly those with more complex geometry. There is a further advantage in that the
Galerkin approach [1] requires the exact solution for the modal equations between impact,
whereas with this collocation method a numerical integration routine is used. However, it is noted
that in general it is not necessary to use exact solutions for the trial functions when applying the
Galerkin method.
For piecewise-linear systems, Wang and Wang [12] describe a collocation method for

simulating periodic responses. The use of collocation methods for modelling periodic motions in
constrained multi-body systems has also been considered by Franke and F .uhrer [13]. In the
approach described here there is no a priori requirement for periodicity.
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2. Mathematical model

The system considered is a clamped cantilever beam with a motion limiting constraint on one
side which is shown schematically in Fig. 1. The stop is positioned at a distance B from the base
along the beam, and with an initial transverse distance a from the beam which is harmonically
forced at its base. The transverse vibration of the centre line of the beam is denoted by uðx; tÞ;
where x is the length along the beam from the base and t is time. Away from the impact
constraint, the beam is assumed to be governed by the Euler–Bernoulli equation with damping
and external forcing

EI
@4u

@x4
þ Z

@u

@t
þ rA

@2u

@t2
¼ f ðx; tÞ; uoa; ð1Þ

where E is the Young’s modulus, r density, A cross-sectional area, Z the damping constant and I
the second moment of area for the beam of length L:
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Fig. 1. Schematic representation of the continuous vibro-impact cantilever beam system.
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When an impact occurs, uðB; tÞ ¼ a and a coefficient of restitution rule of the form

’uðB; tþÞ ¼ �r ’uðB; t�Þ; uðB; t�Þ ¼ a; ð2Þ

is applied, where t� is the time just before impact, tþ is the time just after impact and rA½0; 1� is the
coefficient of restitution. It is assumed that the velocities are normal to the beam centre line, and
that the tangential velocity component at impact is negligible. Eq. (2) is applied instantaneously
such that t� ¼ tþ; and a non-smooth discontinuity in velocity occurs at impact.
However, for a continuous structural element, such as a beam, the velocity is a continuous

function of beam length. Thus, in order to apply the non-smooth impact condition, Eq. (2), at
u ¼ a; the velocity components for the non-impacting part of the beam xaB remain unaffected
such that

’uðxaB; tþÞ ¼ ’uðxaB; t�Þ; uðB; t�Þ ¼ a ð3Þ

applies. The combination of Eq. (2) and (3) are essentially a non-smooth representation of the
physical impact process for the beam. In the physical beam system, the contact time will be finite
(though small for materials with high stiffness) and the velocity reversal will propagate outwards
from the point of impact, a process which is captured with this type of model.
It is now assumed that there is a series solution to the Euler–Bernoulli equation given by

uðx; tÞ ¼
XN
j¼1

fjðxÞqjðtÞ; ð4Þ

where fjðsÞ are the normal mode shapes of the beam, and qjðtÞ are the modal co-ordinates [14].
Then substituting Eq. (4), into the Euler–Bernoulli equation (1) givesXN

j¼1

fj .qjðtÞ þ bfj ’qjðtÞ þ af0000
j qjðtÞ

� �
¼ gf ðx; tÞ; j ¼ 1; 2; 3;y;N; ð5Þ

where ð Þ0 represents differentiation with respect to x; an overdot differentiation with respect to t;
a ¼ EI=rA; b ¼ Z=rA and g ¼ 1=rA: As the normal linear beam modes are being used for this
example, the standard relationship that f0000

j ¼ x4j fj; where

x4j ¼ o2
nj

rAL4

EI
ð6Þ

and onj is the jth natural frequency [15] will be used. In the case, when this does not hold,
collocation can still be applied providing the fourth derivative of the shape function fj can be
computed for each collocation point. Substituting Eq. (6) into Eq. (5) givesXN

j¼1

fj .qjðtÞ þ bfj ’qjðtÞ þ ax4j fjqjðtÞ
� �

¼ gf ðx; tÞ; j ¼ 1; 2; 3;y;N: ð7Þ

N collocation points x1; x2;y; xN are now chosen along the length of the beam. Collocation
points are usually chosen at evenly spaced intervals, and a key requirement for this method is that
the point of contact, x ¼ B; is at a collocation point. Now for the N discrete collocation points
Eq. (7) can be represented in a matrix form

U.qþ bU’qþ aU#nq ¼ gF; ð8Þ
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where

U ¼

f1ðx1Þ f2ðx1Þ y fNðx1Þ

f1ðx2Þ f2ðx2Þ y fNðx2Þ

^ ^ y ^

f1ðxNÞ f2ðxNÞ y fNðxNÞ

2
6664

3
7775; ð9Þ

q ¼ ½q1; q2;y; qN �T; #n ¼ diagfx41; x
4
2;y; x4Ng and F ¼ ½ f ðx1; tÞ; f ðx2; tÞ;y; f ðxN ; tÞ�T: Multiplying

Eq. (8) by U�1 and putting it into first order form gives

’z ¼ Hz þ #F; ð10Þ

where z ¼ ½q; ’q�T; #F ¼ ½0N; gU�1F�T and

H ¼
0N IN

�a#n �bIN

" #
: ð11Þ

Eq. (10) can now be integrated forward in time from a set of initial conditions using a suitable
time-stepping method—in this case a fourth order Runge–Kutta method [16] is used.
To apply the non-smooth impact condition, a coefficient of restitution matrix, R is defined

using Eq. (2) and (3). Eq. (2) applies to the collocation point where impact occurs, x ¼ B; and
Eq. (3) applies to all other collocation points. For example, for a choice of N collocation points
with the impact at point N (the beam tip) the coefficient of restitution matrix is

R ¼

1 0 y 0

0 1 y 0

^ ^ y ^

0 0 y �r

2
6664

3
7775: ð12Þ
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Fig. 2. Impacting beam simulation; parameter values a ¼ �1:05; N ¼ 4; P ¼ 0:0006; O ¼ 28:3; Z ¼ 0:005; r ¼ 0:8: Solid
line, collocation; dashed line, Galerkin.

D.J. Wagg / Journal of Sound and Vibration 276 (2004) 1128–1134 1131



At each time step the condition for the beam having an impact, uðBÞ > a; is checked. Once an
impact is detected a root finding method is used to find the exact time at which uðBÞ ¼ a: Then the
modal velocities are updated according to the matrix coefficient of restitution rule [1]

’qðtþÞ ¼ ½U��1½R�½U�’qðt�Þ ð13Þ

and time stepping begins again.

3. Example: four mode model of a cantilever beam

As an example a cantilever beam which has dimensions length 300 mm width 25:5 mm and
thickness 0:49 mm is considered. The properties of the beam are taken as the following parameter
values: Young’s modulus E ¼ 205� 109 N=m2; second moment of area I ¼ 24:4� 10�14 m4;
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Fig. 3. Non-impacting beam simulation; parameter values N ¼ 4; P ¼ 0:0006; O ¼ 28:3; Z ¼ 0:005: Solid line,

collocation; dashed line, Galerkin; (a) displacement, (b) velocity.
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density r ¼ 8500 kg=m3; cross-sectional area A ¼ 12:4� 10�6 m2; damping constant Z ¼
0:005 Ns=m and length L ¼ 0:3 m: In this example, N ¼ 4 is selected and the initial conditions
are chosen such that all displacements and velocities of the beam are zero at time t ¼ 0: The
forcing function is assumed to be separable into space and time-dependant functions such that
f ðx; tÞ ¼ gðxÞhðtÞ; where for this example hðtÞ ¼ P cosðOtÞ; P ¼ 0:0006 m and O ¼ 28:3 rad=s:
Evaluating the forcing functions at the collocation points gives F ¼ ½gðx1Þ; gðx2Þ;y; gðxNÞ�ThðtÞ
and for this example gðxiÞ ¼ 1 for i ¼ 1;y;N; and it is assumed that the impact occurs at the
beam tip B ¼ L: Then 10 s of vibro-impact motion is simulated and the last 2 s plotted, which is
shown in Fig. 2.
In Fig. 2, the solid line represents the time series simulation computed using the collocation

method described in Section 2. For a comparison the non-smooth-Galerkin method used in
Ref. [1] is plotted as a dashed line. The two methods give qualitatively similar responses in that the
maximum amplitudes and times of impacts are similar. The periodicity of the response is clearly
shown by both simulations.
However, there are considerable differences between the two simulation results. This is

demonstrated more clearly when exactly the same simulation without impacts is plotted—Fig. 3.
In Fig. 3(a), showing displacement, the solid line and dashed line are indistinguishable, but in Fig.
3(b), showing a short section of the velocity signal, there are significant differences between the
simulations. As a result when an impact occurs the non-smooth jump in velocity causes the post
impact behaviour of the two simulations to differ slightly. As more impacts occur this initially
small difference is compounded and the higher frequency behaviour of the two approaches
diverge—demonstrated in Fig. 4. Defining the parameter regimes where reasonable quantitative
agreement between the two methods occurs is an area of future study.
It is worth reiterating at this point that the non-smooth Galerkin method described in Ref. [1]

uses the exact solutions of the decomposed normal mode equations between impacts, and requires
integration of the normal mode shapes across the length of the beam. In principle, the collocation
approach can be applied with neither of these requirements, and can therefore be applied to a
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Fig. 4. Impacting beam simulation; parameter values a ¼ �10:05; N ¼ 4; P ¼ 0:0006; O ¼ 28:3; Z ¼ 0:005; r ¼ 0:8:
Solid line, collocation; dashed line, Galerkin.
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wider range of problems. The trade off is that there is a cumulative reduction in accuracy for the
high frequency part of the simulation. However, for the examples considered here the qualitative
behaviour of the system is still captured by the collocation method.
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